Proteasome blockers inhibit protein breakdown in skeletal muscle after burn injury in rats.

نویسندگان

  • C H Fang
  • J J Wang
  • S Hobler
  • B G Li
  • J E Fischer
  • P O Hasselgren
چکیده

1. Burn injury stimulates ubiquitin-dependent protein breakdown in skeletal muscle. The 20S proteasome is the proteolytic core of the 26S proteasome that degrades ubiquitin conjugates. We examined the effects of the proteasome inhibitors N-acetyl-L-leucinyl-L-leucinal-L-norleucinal (LLnL), lactacystin and beta-lactone on protein breakdown in muscles from burned rats. 2. A full-thickness burn of 30% total body surface area was inflicted on the back of rats. Control rats underwent a sham procedure. After 24 h, extensor digitorum longus muscles were incubated in the absence or presence of 20S proteasome blocker and protein turnover rates and ubiquitin mRNA levels were determined. 3. LLnL resulted in a dose- and time-dependent inhibition of total protein breakdown in incubated muscles from burned rats. Lactacystin and beta-lactone blocked both total and myofibrillar muscle protein breakdown. In addition to inhibiting protein breakdown, LLnL increased ubiquitin mRNA levels, possibly reflecting inhibited proteasome-associated RNase activity. 4. Inhibited muscle protein breakdown caused by LLnL, lactacystin and beta-lactone supports the concept that the ubiquitin-proteasome pathway plays a central role in burn-induced muscle proteolysis. Because the proteasome has multiple important functions in the cell, in addition to regulating general protein breakdown, further studies are needed to test the role of proteasome blockers in the treatment or prevention of muscle catabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treatment of burned rats with insulin-like growth factor I inhibits the catabolic response in skeletal muscle.

Thermal injury is associated with a pronounced catabolic response in skeletal muscle, reflecting inhibited protein synthesis and increased protein breakdown, in particular myofibrillar protein breakdown. Administration of insulin-like growth factor I (IGF-I) has a nitrogen-sparing effect after burn injury, but the influence of this treatment on protein turnover rates in skeletal muscle is not k...

متن کامل

Burn injury upregulates the activity and gene expression of the 20 S proteasome in rat skeletal muscle.

There is evidence that burn injury stimulates ubiquitin-proteasome-dependent protein breakdown in skeletal muscle. In this proteolytic pathway, protein substrates are conjugated to multiple molecules of ubiquitin, whereafter they are recognized, unfolded and degraded by the multicatalytic 26 S protease complex. The 20 S proteasome is the catalytic core of the 26 S protease complex. The influenc...

متن کامل

Ghrelin inhibits skeletal muscle protein breakdown in rats with thermal injury through normalizing elevated expression of E3 ubiquitin ligases MuRF1 and MAFbx.

We previously determined that ghrelin synthesis was downregulated after burn injury and that exogenous ghrelin retained its ability both to stimulate food intake and to restore plasma growth hormone levels in burned rats. These observations and the finding that anabolic hormones can attenuate skeletal muscle catabolism led us to investigate whether ghrelin could attenuate burn-induced skeletal ...

متن کامل

ER stress and subsequent activated calpain play a pivotal role in skeletal muscle wasting after severe burn injury

Severe burns are typically followed by hypermetabolism characterized by significant muscle wasting, which causes considerable morbidity and mortality. The aim of the present study was to explore the underlying mechanisms of skeletal muscle damage/wasting post-burn. Rats were randomized to the sham, sham+4-phenylbutyrate (4-PBA, a pharmacological chaperone promoting endoplasmic reticulum (ER) fo...

متن کامل

Burn-induced increase in atrogin-1 and MuRF-1 in skeletal muscle is glucocorticoid independent but downregulated by IGF-I.

The present study determined whether thermal injury increases the expression of the ubiquitin (Ub) E3 ligases referred to as muscle ring finger (MuRF)-1 and muscle atrophy F-box (MAFbx; aka atrogin-1), which are muscle specific and responsible for the increased protein breakdown observed in other catabolic conditions. After 48 h of burn injury (40% total body surface area full-thickness scald b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical science

دوره 95 2  شماره 

صفحات  -

تاریخ انتشار 1998